联系我们

企业名称:上海瑾瑜科学仪器有限公司

电 话:(86-21)36320539
传 真:(86-21)50686293
邮 箱:sales@generule.com
地 址:上海市浦东康花路499号3号楼3楼308-309室  201315


Wildlife Kaleidoscope Pro Analysis软件论文:基于深度卷积神经网络的区域珍稀鸟类声学监测

Wildlife Kaleidoscope Pro Analysis软件论文:基于深度卷积神经网络的区域珍稀鸟类声学监测

发布时期发布来源下载次数文件类型文件大小
2025-11-21 http://www.generule.com 0次 .pdf 2.0 MB
点击下载
详细介绍

标题:Wildlife Kaleidoscope Pro Analysis软件论文:基于深度卷积神经网络的区域珍稀鸟类声学监测

 

Abstract

Bioacoustic monitoring with machine learning (ML) models can provide valuable insights for informed decisionmaking in conservation efforts. In this study, the team built deep convolutional neural networks to analyze field recordings and classify calls of Yellow-vented warbler (Phylloscopus cantator) and Rufous-throated wren-babbler (Spelaeornis caudatus), both of which are regionally rare in Nepal. Data augmentation techniques for calls of the two bird species were utilized to effectively increase the size of the training set and thus boost model performance. Nepali ornithologists were engaged in iterative data labeling from field recordings, leveraging ML technology in conjunction with expert manual labeling and verification. The model output provides insights of species activity and abundance throughout 2018–2019 in multiple ecosystems along an elevational transect in the Barun River Valley, Nepal. The results of this study may help conservationists better understand species distribution, behavior, diversity, and habitat preference. Additionally, the results provide baseline data to quantify future changes due to habitat disruption or climate change. This modeling methodology and its framework can be easily adopted by other acoustic classification problems.

 

摘要:

使用机器学习(ML)模型进行生物声学监测可以为保护工作中的明智决策提供有价值的见解。在这项研究中,研究小组建立了深度卷积神经网络来分析野外记录,并对黄喉莺(Phylloscopus cantator)和红喉鹪鹩莺(Spelaeornis caudatus)的叫声进行分类,这两种莺在尼泊尔地区都很罕见。利用两种鸟类叫声的数据增强技术有效地增加了训练集的大小,从而提高了模型的性能。尼泊尔鸟类学家利用机器学习技术结合专家手动标记和验证,从现场记录中进行迭代数据标记。该模型输出提供了尼泊尔巴伦河谷海拔样带沿线多个生态系统2018-2019年物种活动和丰度的见解。这项研究的结果可能有助于保护主义者更好地了解物种分布、行为、多样性和栖息地偏好。此外,这些结果提供了基线数据,以量化由于栖息地破坏或气候变化而导致的未来变化。这种建模方法及其框架可以很容易地被其他声学分类问题采用。

 

关键词:Kaleidoscope Pro Analysis softwareWildlife Acoustics,声学追踪监测,野生动物声学监测,声学分析软件,鸟鸣监测