联系我们

企业名称:上海瑾瑜科学仪器有限公司

电 话:(86-21)36320539
传 真:(86-21)50686293
邮 箱:sales@generule.com
地 址:上海市浦东康花路499号3号楼3楼308-309室  201315


声呐技术及运用概述​

发布日期:2021-09-17 来源: 点击:

声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是水声学中应用最广泛、最重要的一种装置,它的整个结构和工作原理都比较类似于雷达。

电磁波是空气中传播信息最重要的载体,例如,通信、广播、电视、雷达等都是利用电磁波,但是在水下,它几乎没有用武之地。这是因为海水是一种导电介质,向海洋空间辐射的电磁波会被海水介质本身所屏蔽,它的绝大部分能量很快地以涡流形式损耗掉了,因而电磁波在海水中的传播受到严重限制。至于光波,本质上属于更高频率的电磁波,被海水吸收损失的能量更为严重,因此,它们在海水中都不能有效地传递信息。实验证实,在人们所熟知的各种辐射信号中,以声波在海水中的传播性能为最佳。正因为如此,人们利用声波在水下可以相对容易地传播及其在不同介质中传播的性质不同,研制出了多种水下测量仪器、侦察工具和武器装备,即各种“声纳”设备。声纳技术不仅在水下军事通信、导航和反潜作战中享有非常重要的地位,而且在和平时期已经成为人类认识、开发和利用海洋的重要手段。在水中进行观察和测量,具有得天独厚条件的只有声波。这是由于其他探测手段的作用距离都很短,光在水中的穿透能力很有限,即使在最清澈的海水中,人们也只能看到十几米到几十米内的物体;电磁波在水中也衰减太快,而且波长越短,损失越大,即使用大功率的低频电磁波,也只能传播几十米。然而,声波在水中传播的衰减就小得多,在深海声道中爆炸一个几公斤的炸弹,在两万公里外还可以收到信号,低频的声波还可以穿透海底几千米的地层,并且得到地层中的信息。在水中进行测量和观察,至今还没有发现比声波更有效的手段。

声呐技术历史

声呐技术至今已有100年历史,它是1906年由英国海军的刘易斯·尼克森所发明。他发明的第一部声呐仪是一种被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上,用来侦测潜藏在水底的潜水艇。声纳技术的诞生有两个基石:一是1827年瑞士物理学家DanielC和CharlesS合作,精确地测出了水下声速(由它人们才可以准确地计算出目标的距离);二是19世纪中叶发明了碳粒微音器(它是一种最早、最灵敏的水听器)。1912年豪华巨轮“泰坦尼克”号与冰山相撞,以及1914年第一次世界大战的爆发,极大地促进了民用和军用声纳的研制和发展。第一部反潜声纳的问世是在第一次世界大战中,但当时由于理论和技术上的不完善,这种水声回声定位系统的性能很不可靠,因而在对付德国U型潜艇的威胁方面尚未作出贡献。随后,人们利用回声探测设备又制成了航海用的回声仪,这些更增加了人们应用声纳技术服务于军事及民用的信心。

大约在1925年左右,德国“信号”公司将其生产的声纳设备定名为“测深仪”,并在美国和英国有商品销售。同时,美国海军实验室的领导其成员积极改进对潜艇进行回声定位的方法,他们通过采用磁致伸缩换能器找到了回声定位中合适的发射换能器。与此同时,由于电子学的发展,已经可以使声纳信息经过放大和简单的处理显示给观察者。大约在1935年,德、英、美三国又研制出了几种较为实用的声纳,1938年,声纳设备开始在美国批量生产。到第二次世界大战,几乎所有的军用舰船都装备了声纳系统,并在海战中发挥了十分重要的作用,当时交战各方损失了一千多艘潜艇,绝大多数是被声纳发现的。第二次世界大战后,军用声纳技术继续发展,但各个国家都将这方面的最新技术列为严格保密的范围。人类进入20世纪七八十年代以后,随着海洋开发事业的迅猛发展,声纳技术以惊人的速度向民用方面转化,出现了各种用途的现代化声纳,如导航声纳、通信声纳、侧扫声纳、远程警戒声纳、水声对抗声纳、拖曳阵声纳、鱼雷自导声纳、水雷自导声纳等等,声纳技术已日趋成熟和完善。目前,声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。和许多科学技术的发展一样,社会的需要和科技的进步促进了声呐技术的发展。 

声呐结构与分类 

声呐装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声呐基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声呐导流罩等。  

换能器是声呐中的重要器件,它是声能与其它形式的能如机械能、电能、磁能等相互转换的装置。它有两个用途:一是在水下发射声波,称为“发射换能器”,相当于空气中的扬声器;二是在水下接收声波,称为“接收换能器”,相当于空气中的传声器(俗称“麦克风”或“话筒”)。换能器在实际使用时往往同时用于发射和接收声波,专门用于接收的换能器又称为“水听器”。换能器的工作原理是利用某些材料在电场或磁场的作用下发生伸缩的压电效应或磁致伸缩效应。     

声纳的分类按其工作方式可分为: 
主动声呐:主动声呐技术是指声呐主动发射声波“照射”目标,而后接收水中目标反射的回波以测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。它由简单的回声探测仪器演变而来,它主动地发射超声波,然后收测回波进行计算,适用于探测冰山、暗礁、沉船、海深、鱼群、水雷和关闭了发动机的隐蔽的潜艇;  
被动声呐:被动声呐技术是指声呐被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。它由简单的水听器演变而来,它收听目标发出的噪声,判断出目标的位置和某些特性,特别适用于不能发声暴露自己而又要探测敌舰活动的潜艇。 

按装备对象可分为: 
舰载声纳、潜用声纳、机载声纳、便携式声呐和岸基固定声纳 
按战术用途可分为:探测声纳、测距声纳、目标识别声纳、导航声纳、探雷避障声纳、通信声纳、侦察声纳、监视声纳等。 
按基阵携带方式可分为:舰壳声纳、拖曳声纳、舷侧声纳、吊放声纳、声纳浮标等。 

声呐的军事应用 

随着军事技术的不断发展,声呐浮标被应用到各个领域,而美军就特别喜欢使用浮标来进行反潜,利用浮标来捕捉对方潜艇的踪迹,从而来精确定位潜艇的位置。声学(声纳)是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声纳技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。

声纳可按工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声纳。例如按工作方式可分为主动声纳和被动声纳;按装备对象可分为水面舰艇声纳、潜艇声纳、航空声纳、便携式声纳和海岸声纳,等等。最初声纳主要用于探测敌方潜艇,随着技术的发展,声纳已发展到第五代,即数字式声纳,性能有了很大提高。在军事上用于搜索潜艇、探测水雷、海底警戒、水下导航、水中(鱼雷、水雷等)制导和对抗
海水是电磁波的不良介质,因此在水下进行侦测活动只能依靠水声技术,而随着现代潜艇噪音技术不断提高,对潜可信监视范围不过数十海里,一旦潜艇进入广阔海域,再想找到如同大海捞针。因此美国就使用反潜机在世界上的各大航道布设各种各样的反潜浮标,在美苏冷战期间,苏联潜艇部队就创造出了一种独门技术,让美军心惊胆战,不过对于美军投在我国海域的声呐浮标,我国渔民可是大展身手。

通常就是一网下去,数个声呐就被打捞起来,以至于让美军的侦察船涂着硕大的标语“声呐无铜,捞走无用”。


全球的水下声呐技术

全球的水下声呐技术方面,代表性区域主要为美国、欧洲、俄罗斯与中国。
美国的水下声呐技术主要有:AN/SQR-19声呐、AN/BQQ-5综合声呐系统、AN/BQQ-10综合声呐系统、典型SAS系统、C3D测深侧扫声呐系统

AN/SQR-19被动拖曳线列阵声呐是在AN/SQR-18的基础上开发的,工作始于1976年。它是由美国西屋电气公司、古尔德公司和通用电气公司协作研制的。到1982年把第一部AN/SQR-19试验样机首次安装于美国海军DD-980(Moosbmgger)号导弹驱逐舰上,经试验鉴定后,自1983年开始正式批准生产。1985年7月AN/SQR-19第一套生产样机正式交付使用。该声呐的主要使命是对潜远距离被动探测、噪声测向、跟踪和识别,对水面舰艇也具有远距离探测能力。在AN/SQQ-89(V)舰载综合反潜作战系统中,AN/SQR-19承担了大范围远距离初始探测,引导舰载反潜直升机SH-60B迅速飞往目标区域,使用机载探潜设备对潜艇实施精确定位,用机载反潜武器对潜攻击或经数据链给母舰传输目标数据由舰载远程武器对潜攻击。AN/SQR-19还与AN/SQS-53C声呐相互配合,互为补充,保证中、近程对潜探测、跟踪、识别、定位以及武器的使用。

该声呐由于技术先进和性能优良,美海军已将该系统装备于舰艇,以及改装型CG-47级导弹巡洋舰、DD-963级驱逐舰、DDG-51级导弹驱逐舰和FFG-7级导弹护卫舰,作为舰载综合反潜作战系统AN/SQQ-89(V)中的一个分系统。此外,该系统也已向澳大利亚、加拿大和西班牙等国出售。

欧洲的水下声呐技术主要有:2054综合声呐系统、2076综合声呐系统、TSM2233综合声呐系统、CSU90和DBQS-40综合声呐系统、SES-96参量阵测深/浅地层剖面仪、典型SAS系统。

2076声呐是泰雷兹公司为英国皇家海军设计的一种潜艇声呐探测系统,是世界上最先进的全综合被动/主动搜索和攻击声呐系统。2076声呐的开发工作始于1990年。2002年在英国皇家海军“托贝”号核潜艇上进行了2076声呐系统宽孔径舷侧噪声测距声呐部件的海试。“托贝”号和“锋利”号分别于2003年和2004年完成2076声呐改换装工作。“机敏”级核潜艇从建造开始就把2076声呐装备在艇上。2076综合声呐设备采用了重要的商用成熟技术,被称为第5阶段的一个提高计划将用COTS产品部分替代过去的结构。这种“开放”结构能够迅速嵌入新的软件功能。一旦所有的工作完成,2076第5阶段的系统将完全部署在整个英国皇家海军的攻击型核潜艇舰队中。

俄罗斯的水下声呐技术主要有:MGK-540综合声呐系统、Irtysh/Amfora综合声呐系统。俄罗斯基本上继承了苏联的潜艇声呐技术,是世界上少数能自行研制拖曳阵声呐的国家之一。现在俄罗斯潜艇上普遍装备了艇壳式基阵声呐和拖曳变深声呐。MGK-540综合声呐系统装备在俄罗斯海军现役的所有主战潜艇上,其中包括“阿库拉”Ⅰ、Ⅱ型,“塞拉”Ⅰ、Ⅱ型核潜艇等。该系统主要用于连续监视潜艇所在水域的水面和水下状况,以被动监听方式对目标进行探测、定向和跟踪。

中国的水下声呐技术主要有:H/SJG-206低频被动拖曳线列阵声呐、双频合成孔径声呐。

国产首款低频被动拖曳线列阵H/SJG-206直到2008年才伴随054A型护卫舰加入人民解放军战斗序列。截至2016年该型声纳已装备16艘054A型导弹护卫舰与6艘052C型导弹驱逐舰,使用时从舰尾右侧的水声设备开口中放出。舰尾左侧开口对应的则是拖曳式鱼雷诱饵。除了近些年新建的战舰之外,更早服役的112“哈尔滨”,113“青岛”,540“淮南”,542“铜陵”等水面战舰也在现代化改装过程中引入了H/SJG-206。

目前,哈尔滨工程大学17日发布消息,该校“系列化浅水多波束测深声呐关键技术创新与应用”项目中多项关键技术达到国际领先水平,彻底打破了长期以来国际上对中国在高端浅水多波束测深声呐技术的封锁。该成果是在哈工程国产首台中水多波束测深系统(海军型号产品)——H/HCS-017型条带测深仪基础上,历时十年,由哈尔滨工程大学牵头,联合多家高校及科研机构完成。该技术突破了“浅水多波束测深声呐高精度方位估计”、“沿航迹向合成孔径处理”、“无安装约束免校准”、“海量海底地形信息多分辨率三维可视化表达”、“声呐图像人工智能解译”等关键技术,实现了高精度、超宽覆盖、多功能一体化测量、设备系列化研制、批量生产和推广应用。该产品最小测深、分辨力、最大覆盖扇面等核心技术指标均达到国际领先水平,使中国成为继美国、挪威等之后完全掌握高端浅水多波束测深声呐核心技术的少数国家之一,彻底打破了长期以来国际上对中国高端浅水多波束测深声呐技术的封锁。项目研究成果已在中国南海岛礁重大专项、中俄界河划界、东海海底试验场地形精细调查等项目应用

声呐技术发展趋势

目前水下声呐技术及装备发展趋势主要体现在三方面:全自适应智能化认知、共址和分布式MIMO声呐、广域异质多传感器联合感知。

全自适应智能化认知。传统主动声呐系统在处理目标反射回波时,没有考虑声呐接收机感知的环境信息和目标特性的先验知识对发射机的影响,发射信号参数固定。因此,在传输衰减、噪声、混响、多径、时变和大多普勒等复杂水下环境中很难获得理想的探测效果。受近年认知无线电、认知雷达快速发展的启发,通过将先验知识和连续学习引入传统声呐系统,建立对发射端的自适应反馈控制,提出了认知声呐,其组成如图所示。基于知识理论的智能化认知声呐能够根据环境变化和目标特性的先验知识对发射机和接收机进行联合自适应控制,提高对水下目标信号的探测和识别能力。

共址和分布式MIMO声呐。MIMO技术首先在通信和雷达领域得到应用,分为共址MIMO和分布式MIMO。共址MIMO利用发射信号的分集特性扩展收发阵列的虚拟孔径,提高目标探测能力。分布式MIMO阵元分开排列,发射正交信号,从不同角度照射目标,减低起伏衰落,提高探测稳定性。水下特别是近海航船数量多、噪声大、声场复杂、多径和多普勒效应严重,对水雷、蛙人、静音潜艇等弱小目标探测难度大,传统主被动雷达都难以达到理想效果,MIMO声呐为解决这一问题提供了一条新途径。

广域异质多传感器联合感知。单一传感器探测效率低,难以满足大范围、长时间水下信息获取需求,通过网络技术将警戒监视海域内多个不同位置布放的声呐、雷达、激光、红外等传感器进行互联,实现数据的交换、分发和汇聚,进行集中或分布式数据处理,可以形成分布式网络化水下警戒探测系统,实现对覆盖范围内目标的探测、定位、跟踪和分类识别功能。分布式网络化水下预警探测系统具有机动灵活、成本低、效费比高等优点,能够有效增强水下战场信息感知能力。